Automorphisms of Coxeter Groups of Rank 3 with Infinite Bonds
نویسندگان
چکیده
منابع مشابه
Automorphisms of Coxeter Groups of Rank Three
If W is an infinite rank 3 Coxeter group, whose Coxeter diagram has no infinite bonds, then the automorphism group of W is generated by the inner automorphisms and any automorphisms induced from automorphisms of the Coxeter diagram. Indeed Aut(W ) is the semi-direct product of Inn(W ) and the group of graph automorphisms.
متن کاملAutomorphisms of Coxeter Groups
We compute Aut(W ) for any even Coxeter group whose Coxeter diagram is connected, contains no edges labeled 2, and cannot be separated into more than 2 connected components by removing a single vertex. The description is given explicitly in terms of the given presentation for the Coxeter group and admits an easy characterization of those groups W for which Out(W ) is finite.
متن کاملAutomorphisms of nearly finite Coxeter groups
Suppose that W is an infinite Coxeter group of finite rank n, and suppose that W has a finite parabolic subgroup WJ of rank n 1. Suppose also that the Coxeter diagram of W has no edges with infinite labels. Then any automorphism of W that preserves reflections lies in the subgroup of AutðWÞ generated by the inner automorphisms and the automorphisms induced by symmetries of the Coxeter graph. If...
متن کاملInner Automorphisms of Right-angled Coxeter Groups
If W is a right-angled Coxeter group, then the group Aut(W ) of automorphisms of W acts on the set of conjugacy classes of involutions in W. Following Tits [16], the kernel of this action is denoted by Aut◦(W ). Since W is a CAT(0) group [12], the index of Aut◦(W ) in Aut(W ) is finite and there is a series 1 Inn(W ) Aut◦(W ) Aut(W ) of normal subgroups of Aut(W ). A presentation for Aut◦(W ) w...
متن کاملAutomorphisms of Right-Angled Coxeter Groups
If (W, S) is a right-angled Coxeter group, then Aut(W ) is a semidirect product of the group Aut◦(W ) of symmetric automorphisms by the automorphism group of a certain groupoid. We show that, under mild conditions, Aut◦(W ) is a semidirect product of Inn(W ) by the quotient Out◦(W ) = Aut◦(W )/Inn(W ). We also give sufficient conditions for the compatibility of the two semidirect products. When...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2002
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.9049